Supercoil me!
Even living cells have their own tangled problems to solve. They involve knots that arise accidentally in DNA and that can comprise its functionality. A new study by SISSA (Scuola Internazionale Superiore di Studi Avanzati) brings a new twist to the problem and suggests that the DNA propensity to be supercoiled, just like telephone cords, can come to the rescue. These coils can keep DNA knots locked in place for long enough that they can be untied by specialised enzymes. The computational study, based on molecular dynamics simulations of bacterial DNA, has just been published in Nucleic Acids Research . A tangled problem Supercoiled, twisted, and even knotted! Far from the elegant and polished textbook images, DNA filaments in living cells is all crumpled and entangled and, to be functional, needs to be constantly unravelled, much like our telephone cords that with careless use accumulate annoying curls or supercoils. "Supercoils are, in fact, present in DNA too