Aspergillus fumigatus—What Makes the Species a Ubiquitous Human Fungal Pathogen?
Introduction
Aspergillus fumigatus, the major cause of life threatening invasive aspergillosis (IA), is a ubiquitous saprophytic fungus to which humans are exposed daily in most parts of the world. The infection is initiated by inhalation of conidia, which are cleared quickly in a normal host but can cause invasive disease in immunocompromised individuals [1], [2]. The following features make A. fumigatus a ubiquitous pathogen: 1) survival and growth in a wide range of environmental conditions, 2) effective dispersal in the air, 3) physical characteristics that allow conidia to reach the distal airways, and 4) swift adaptability to the host environment. The biology, pathogenesis, molecular biology, and virulence factors of A. fumigatus have been exhaustively reviewed [2]–[8]. This brief article focuses on how A. fumigatus is equipped with the features necessary for a ubiquitous pathogen.Aspergillus fumigatus Is Equipped to Survive and Propagate Successfully under a Wide Range of Environmental Conditions
In most parts of the world, Aspergillus fumigatus can be isolated from a wide variety of substrates throughout the year. Although A. fumigatus grows optimally at 37°C and a pH 3.7 to 7.6, it can be isolated wherever decaying vegetation and soil reach temperatures range between 12° and 65°C [9] and the pH ranges between 2.1–8.8 [10]. A. fumigatus was found to be the dominant fungus in garden and greenhouse soil that comprised 35 to 70 percent of the total numbers of colony-forming fungi [10]. As an efficient recycler in nature, A. fumigatus possesses a versatile metabolism that meets its nutritional requirements under different environmental conditions [11]. The presence of numerous glycosylhydrolases [6] and a group of extracellular proteinases in the A. fumigatus genome attest to the ability of the fungus to grow by degradation of polysaccharides from plant cell walls and acquire nitrogen sources made available by degradation of proteinacious substrates [8]. Self-heating compost heaps are major environmental sources of A. fumigatus due to its pronounced thermotolerance. One study found 100,000 colony-forming units (cfu)/gram/dry weight of compost [12], and compost piles of chipped leaves and branches may yield massive and almost pure cultures of A. fumigatus [1]. The thermotolerance of A. fumigatus is even more remarkable in the ascospores, the propagules produced in the sexual cycle. The ascospores of A. fumigatus (Figure 1A) are protected by an extraordinarily thick wall (Figure 1B) compared to those of other aspergilli such as A. nidulans [13]. The ascospores of A. fumigatus germinate after heating at 70°C for 30 min [14] (Figure 1C) and should survive at core temperatures of the compost pile that can reach ≥70°C [2].
Figure 1. Aspergillus fumigatus ascospores.A)
SEM image of an ascospore produced by mating between two compatible
strains. Courtesy of Bryan Hansen. B) TEM image of an ascospore
cross-section showing an unusually thick wall (white bar) composed of an
electron-dense inner wall covered by a thick outer wall. Courtesy of
Mones Abu-Asab. C) DIC image of germinating ascospores (white arrows)
and dead conidia (black arrow) after 30 min incubation at 70°C.
doi:10.1371/journal.ppat.1003743.g001
Although A. fumigatus
fails to grow at temperatures below 12°C, its conidia can tolerate
stresses imposed by freezing for prolonged periods. Depending on the
strain, conidia can survive in liquid nitrogen for up to 18 years [9].
Although a few genes associated with fungal growth at ≥48°C have been
characterized, the genetic systems involved in survival and growth under
extreme temperatures remain unidentified [15]. A. fumigatus
conidia can also tolerate dehydration for prolonged periods, surviving
for more than 60 years when lyophilized, and the conidia that had been
maintained in anhydrous silica gel survived for more than 25 years
(unpublished data).doi:10.1371/journal.ppat.1003743.g001
The wide distribution of A. fumigatus in nature may also be due to the presence of successful defense systems such as the production of potent secondary metabolites and efflux pumps. The A. fumigatus genome contains 22 secondary metabolism gene clusters [11] and 16 different secondary metabolites have been identified [16], including gliotoxin, a broad range antimicrobial [17]. A. fumigatus possesses a higher number of ABC transporters than its close genetic relative, Aspergillus fischerianus [15]. The A. fumigatus genome is also rich in specific enzymes such as catalases, superoxide dismutases, and glutathione transferases for the detoxification of reactive oxygen species (ROS) [8], [18]. All these features equip A. fumigatus to survive and propagate in conditions that are detrimental to a broad range of other environmental organisms.
Aspergillus fumigatus Conidia Are Dispersed More Efficiently in the Air Than Those of Most Other Molds
Aspergillus fumigatus conidia accumulate 1,8-dihydroxynaphthalene melanin in their cell wall, have a blue-green color [19], [20], and are notorious for their high dispersibility. The slightest air current can cause conidia to disperse due to their remarkable hydrophobicity, and these airborne conidia are protected from ultraviolet irradiation due to the melanin in their cell wall [20]. One study has estimated the emission rate of A. fumigatus conidia from an undisturbed compost pile to be 8–11×103 cfu/m2/s at the mean wind speed of 1 m/s [21], which indicates how efficiently conidia are dispersed with the slightest agitation. Figure 2A shows an aerosol cloud over a disturbed compost pile. A majority of the microbial growth on a plate of agar medium briefly exposed to the air at the site was that of A. fumigatus (Figure 2B). Although all fungal spores produced on aerial hyphae or conidiophores are hydrophobic, the degree varies from mild to highly hydrophobic [22] which impacts the efficiency of spore dispersibility. A. fumigatus conidia are considerably more hydrophobic than those of other aspergilli such as A. nidulans. This requires more caution in the handling of A. fumigatus cultures than other fungi to prevent contamination of surrounding areas in the laboratory (Figure 2C, D). Conidial hydrophobicity is conferred by the surface rodlet layer encoded by the rodA gene [23]. In addition to dispersal of airborne conidia, conidia imbedded in soil may also be effectively transported from one place to another by swarming soil bacteria such as Paenibacillus vortex. P. vortex facilitates the dispersal of A. fumigatus more efficiently than other fungal species that have similarly sized conidia such as Penicillium expansum or P. citrinum [24]. Conidial surface proteins are crucial for the passive dispersal of A. fumigatus by the bacteria since proteinase K treatment of conidia abolished the conidia-bacterial interaction. Undoubtedly, A. fumigatus conidia are also being passively dispersed via rodents, insects, and worms but the impact of A. fumigatus spread by these means has not been studied.
Figure 2. Dispersibility of A. fumigatus conidia.A)
A cloud of aerosol released in the air after turning of a compost pile
located in Maryland, USA. B) A malt extract agar plate exposed to the
air for a minute at the site and incubated for a few days at 37°C grew
predominantly A. fumigatus colonies (both pictures were taken by the late Dr. Chester Emmons). C) Eight small sterile agar plates of Aspergillus minimal medium were placed around a seven-day-old culture of A. fumigatus
strain B-5233 (center) in a class 2 biosafety cabinet. In the absence
of air flow the lids of all the plates were removed for 24 h. The small
plates were then incubated for three days at 37°C. D) The same procedure
as in C except that the small plates were exposed to the culture of a
ten-day-old A. nidulans strain RYC13B (center). A. fumigatus conidia dispersed to the surrounding small agar plates while none was evident for the A. nidulans strain.
doi:10.1371/journal.ppat.1003743.g002
doi:10.1371/journal.ppat.1003743.g002
Comments
Post a Comment